Telomeres and double-strand breaks - all's well that "ends" well. ...
نویسنده
چکیده
Bailey, S. Telomeres and Double-Strand Breaks - All's Well that "Ends" Well. ... Radiat. Res. 169, 1-7 (2008). Sometimes one's life (including one's science) makes a lot more sense when viewed from the perspective of time, reflected back on over a number of years. That has indeed been the case for me. Strangely enough, the story begins with chromosomes and "ends" with telomeres, both at Colorado State University. And, just as with chromosomes, a lot happened in between. Telomeres were first identified based on their function-they protected the physical ends of chromosomes from interaction with broken DNA ends created by ionizing radiation. While I was at Los Alamos National Laboratory, the sequence of human telomeres was discovered, making probes available that allowed us to re-examine and provide direct support of these early observations; thus began my fascination with telomeres. Chromosome orientation in situ hybridization (CO-FISH) also came onto the scene while I was in Los Alamos. This strand-specific modification of standard FISH, especially when combined with telomeric sequence probes, has proven to be a powerful approach that provides information not available by any other means. Applications have included pericentric inversion detection, distinction between leading- and lagging-strand telomeres, and identification of telomere-double-strand break (DSB) fusions. We also provided the first direct evidence that DSB repair proteins (DNA-PK in particular) are required for mammalian telomeric end capping, and we have been characterizing telomere dysfunction in NHEJ and HR repair-deficient backgrounds ever since. Cells must correctly distinguish between DNA ends represented by telomeres and DNA ends produced by DSBs if all is to end well. Just as these studies have provided new insight into the complex, often surprising, interactions at DNA ends, they also provoke new questions. Whereas it is now well established that DSB repair proteins associate with telomeres, most recently we've been asking whether the reverse scenario holds: Do telomere proteins interact with DSBs? We find that DSBs induced by ionizing radiations are not sufficient to recruit the essential telomere protein TRF2 as an early damage response, so perhaps this interplay is a one-way street. The rest of the story waits to unfold.
منابع مشابه
How do telomeres and NHEJ coexist?
The telomeres of eukaryotes are stable open double-strand ends that coexist with nonhomologous end joining (NHEJ), the repair pathway that directly ligates DNA ends generated by double-strand breaks. Since a single end-joining event between 2 telomeres generates a circular chromosome or an unstable dicentric chromosome, NHEJ must be prevented from acting on telomeres. Multiple mechanisms mediat...
متن کاملModeling the distribution of deposited energy by alpha particles from Radon 223 decay and its effect on DNA
The ionizing radiations, through physical and chemical processes, lead to simple and complex single- and double- strand breaks, as well as base lesions to the DNA. In this study, taking into account all the physical and chemical processes involved in the interaction of ionizing radiation with matter, the initial damage induced to DNA was evaluated for 5.7 MeV alpha-rays from Radon 223 isotope....
متن کاملA sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interfac...
متن کاملSimulation of strand breaks induced in DNA molecule by radiation of proton and Secondary particles using Geant4 code
Radiotherapy using various beams is one of the methods for treating cancer, Hadrons used to treat cancers that are near critical organs. The most important part of the cell that is damage by ionizing radiation is DNA. In this study, damages induced in the genetic material of living cells (DNA) defined by the atomic model from the protein data bank (PDB) have been studied by radiati...
متن کاملTelomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining.
Shelterin protects chromosome ends from the DNA damage response. Although the mechanism of telomere protection has been studied extensively, the fate of double-strand breaks (DSBs) inside telomeres is not known. Here, we report that telomere-internal FokI-induced DSBs activate ATM kinase-dependent signaling in S-phase but are well tolerated and repaired efficiently. Homologous recombination con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation research
دوره 169 1 شماره
صفحات -
تاریخ انتشار 2008